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e DyGIE++ (Wadden et al., 2019) is a discriminative multi-task framework. It achieves IE by enumerating and e MUC 3/4: Our document-level data source to create probing tasks, thanks to its rich | —o :g?yp 0.65
scoring sections (spans) of encoded text and using the relations between spans to detect triggers and events. coreference information. The dataset has 1300/200/200 training/validation/testing IsCoref
e GTT (Du et al., 2021) is a sequence-to-sequence event-extraction model that perform the task end-to-end, documents. Note that 44.6% of the inputs have no corresponding events. A keyword- 0 5 10 15 20
without using labeled triggers. It is trained to decode a serialized template, with tuned decoder constraints. based trigger was added to every template of the MUC dataset to make it compatible Probing accuracy on event (up) and semantic (down) info over

e TANL (Paolini et al., 2021) is a sequence-to-sequence multi-task model that "translates" input text to
augmented languages. For IE, the in-text augmented parts identify triggers and roles. It uses a two-stage
approach for event extraction by first extracting trigger then finding arguments for each trigger predicted.

Probing Performances with Different IE Frameworks and Embedding Method

Model Input WordCt SentCt IsArg Arglyp Coref EvntTyps CoEvnt EvntCt | Avg
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DyGIE++ FullText | 58.6 47.0 87.1 83.8 64.7  60.5 73.6 67.2 67.8
(41.9) SentCat | 57.4 58.9 87.5 85.6 69.2  56.7 67.9 67.0 68.8
GTT FullText | 58.6 46.3 88.3  88.5 66.7 604 66.4 68.3 67.9
(49.0) SentCat | 55.8 58.9 88.6 88.0 69.5 57.5 65.07 67.5 68.8
TANL FullText | 54.2 43.3 88.2 86.8 66.6 57.8 60.0 65.8 65.3
(33.2) SentCat | 34.3 40.8 88.2 87.0 65.6 535 59.8 67.0 62.0
BERT;,,. FullText | 65.5 45.0 87.8 86.1 757 604 74.0 63.5 69.7

Table 1: Probing Task Test Average Accuracy.
probing tasks on the input representations. We compare the 5-trial averaged test accuracy on full-text embeddings
and concatenation of sentence embeddings from the same encoder to the untrained BERT baseline. IE-F1 refers to
the model’s F1 score on MUC test. Underlined data are the best in same embedding method, while bold, overall.

= frameworks trained for 20 epochs on MUC, and we run

SentCat here refries to embedding sentences individually and then concatenating them. This can be more effective
for |E tasks than using embeddings directly from a fine-tuned encoder designed for entire documents. This
indicates encoders’ poor capacity to capture of discourse information.

Trained encoders significantly enhance embeddings for event detection (higher accuracy in event count predictions
(EvntCtT)). Nevertheless, embeddings lose information for event typing (EvntTyp 2 1) and coreference (Corefl)

with TANL and DyGIE++.

e WikiEvents (Li et al., 2021) results are reported in appendix. It has 200/20/20 training/
validation/testing inputs and has wider ranges of incident types.
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comparison fairness. Concatenated sentence embed-

dings show an advantage on medium or long texts. Probe acc. on event & semantic information over

BERT layers as-is and from GTT trained over 18 epochs.

document-level |IE training epoch. 5 random seed results averaged
(with std. error bars). Trained encoder gain and lose information in
their generated embeddings as they are trained for the IE tasks.

Takeaways

e Our work provides the first insights into
document-level representations.

¢ Trained encoding improves on capabilities
like event detection and argument
labeling, but |E training compromises
encoder’s ability to encode coreference
and event typing information.

e Current models marginally outperformed
the baseline in capturing event
information at best, uncovered by
comparisons of |E frameworks.

e Encoder models struggle with document
length and cross-sentence discourse, as
concatenation of sentence embeddings
yielded stronger probing performances.
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